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ABSTRACT
In the Third Critical Assessment of Techniques for Protein
Structure Prediction (“CASP-3”) contest, the best perfor-
mance was obtained with a classifier that uses neural net-
works, a window size of fifteen around a given amino acid,
and a training set of about 299,186 amino acids. We set out
to investigate the possibility of obtaining better performance
by using a bagging-like committee of binary decision trees,
created using an order-of-magnitude more training data.
There are two main reasons to believe that it should be pos-
sible to obtain better performance in this way. One is that
Jones did not use a committee of classifiers in CASP-3 (and
used only a four-classifier committee in CASP-4), whereas
bagging studies indicate that improvement plateaus in the
range of thirty to fifty classifiers in a committee. A second is
that, by using supercomputers available at the Sandia Na-
tional Labs, it is feasible to use an order of magnitude more
training data than was used by Jones. This paper reports
on our experiences pursuing this line of research. We show
that with “large” data sets and with bag size equal to par-
tition size, simple disjoint partitioning performs at least as
well as standard bagging. Given large datasets, either out-
performs a single classifier built on all the data. We also
show that there are subtle differences in the operation of
binary decision trees and neural networks for this problem.
One difference is that the neural network seems less prone
to “over-learning” the “easy” subset of the training data.

Keywords
protein structure prediction, binary decision trees, neural
networks, bootstrap aggregation, combination of classifiers

1. INTRODUCTION
There are many data mining applications in which the data
sets are too large to fit into the memory of the typical com-
puter [25; 9; 6; 22; 19; 3; 13; 15; 20]. One possible approach
is to sub-sample the data in some manner [22; 5]. However,
it can be difficult a priori to know how to subsample the
data so that the accuracy of the classifier is not affected.

Another possible approach is to partition the original data
into smaller subsets, and use each subset to create one of a
committee of classifiers [9; 6; 21; 3; 13; 15]. One advantage
of this approach is that the partition size can simply be set
at whatever amount of the original data can be maximally
handled on the available system. Another advantage of this
approach is that the committee of classifiers potentially has
better accuracy than a single classifier constructed on all the
data.
Bagging (“bootstrap aggregation”) is a well-known tech-
nique for creating a committee of classifiers. In its typical
form, it involves random sampling with replacement from
the original data set to create “bags” of data of size 100%
of the original data. Typically, a committee of 30 to 100
classifiers might be created in this way. Bagging has been
shown to result in improved performance over a single clas-
sifier created on all of the original data [4; 24; 1].

The success of bagging suggests that it might be a useful ap-
proach to creating a committee of classifiers for large data
sets. We define large data sets as those which do not fit
in the memory of a typical scientific computer. However,
experience with bagging has primarily been in the context
of “small” data sets. If the data set is too large to be han-
dled in the memory of a typical computer, then so is a bag.
Similarly, creating and processing fifty or more bags of the
size of the original data will likely present serious difficulties.
This raises the question of which particulars of the bagging
approach are essential in the context of large data sets. We
show that partitioning a large original data set into N dis-
joint subsets is all that is needed to achieve a bagging-like
effect.

We also explore the relative suitability of binary decision
trees versus neural networks in the context of protein sec-
ondary structure prediction. Secondary structure prediction
is an important application of “extreme” pattern recogni-
tion. It is “extreme” in the size of the learning data, which
might be millions of examples requiring gigabytes of stor-
age. It is also “extreme” in the dimensionality of the feature
space, which is on the order of 300-dimensional in recent suc-
cessful classifiers for this application. The basic problem is
to predict one of three secondary structure labels at a given
amino acid in a given protein. The feature vector might rep-
resent a window of 15 amino acids centered around the one
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whose structure is predicted, and contain a scaled likelihood
value for each of twenty possible amino acid substitutions at
each of the 15 amino acids (15 × 20 = 300-dimensional).

2. LITERATURE REVIEW
Breiman’s bagging [4] has been shown to improve classifier
accuracy. Bagging basically combines models learned on
different samplings of a given dataset. Bagging turns an
order-correct learner into a nearly-optimal one. According
to Breiman, bagging exploits the instability in the classifiers,
since perturbing the training set produces different classifiers
using the same learning algorithm. Quinlan experimented
with bagging on various datasets and found that bagging
substantially improved accuracy [24]. However, the exper-
iments were performed on small datasets, the largest one
being 20,000 examples.

Domingos empirically tested two alternative theories sup-
porting bagging on decision trees: (1) bagging works because
it approximates Bayesian model averaging or (2) it works be-
cause it shifts the priors to a more appropriate region in the
decision space [10]. The empirical results showed that bag-
ging worked possibly because it counter-acts the inherent
simplicity bias of the decision trees. That is, with M dif-
ferent bags, M different classifiers are learned, and together
their output is more complex than what a single learned
classifier produces.
The family of boosting algorithms [12] uses the entire dataset
for learning. It assigns weights to the training instances, and
these weight values are changed depending upon how well
the associated training instance is learned by the classifier;
the weights for misclassified instances are increased. Thus,
re-sampling occurs based on how well the training samples
are classified by the previous model. Since the training set
for one model depends on the previous model, boosting re-
quires sequential runs and thus is not readily adapted to
a parallel environment. It is also going to be quite time-
consuming for large disjoint subsets of data.

Combiner and arbiter strategies for combination of classi-
fiers were evaluated in [7]. Their experiments showed that
the arbiter strategy sustains the accuracy compared to the
classifier learned on the entire data set. The combiner strat-
egy experienced a drop in accuracy with the increase in the
number of subsets, which can be attributed to the lack of
enough information content from the small subsets. How-
ever, a few cases resulted in an improvement in the accuracy.
In our work reported here, we are interested in disjoint sub-
sets of “large” original data sets, larger than in [7], and so
there is reason to expect that accuracy can be maintained.

Chan and Stolfo relaxed their definition of strict disjoint
subsets [8] by allowing a small amount of overlap across the
subsets. On the datasets DNA Splice Junction with 3,190
examples and Protein Coding Region with 20,000 examples,
it was found that overlapping did not bring any gain to their
meta-learning strategy. Each classifier trained on a disjoint
set is biased towards its own set, and when these classifiers
are combined a protocol of knowledge sharing is established,
and each individual classifier’s bias is reduced. Again, we are
interested in “large” data sets relative to those considered
in this work.
Hall et al [13; 15; 14] used disjoint partitions of data to learn
on, and then combined the classifiers. The classifiers were
learned using C4.5 release 8 [23]. It was found that using a

conflict resolution strategy for combining rules, the accuracy
usually did not decrease for a small number of partitions, at
least on the datasets that were tested. Our current work
is similar to this, but focuses on comparison of bagging-like
approaches to simple partitioning of large datasets.

Provost et al [22] found that sub-sampling the data gave
the same accuracy as learning from the entire dataset at
much lower computational cost. They analyzed “progressive
sampling” methods– progressively increasing the sample size
until the model accuracy was maintained. It was found that
adding more training instances did not help the accuracy
of the classifier, and after some number of instances (nmin)
the performance of the classifier plateaus. Initial indications
from our work reported here are that the large data set used
cannot profitably be sub-sampled.

3. EXPERIMENTS ON SMALL DATASETS
One set of experiments uses five “small” public datasets to
compare several different approaches for creating a commit-
tee of classifiers. The point of this set of experiments is to
isolate the essential factors leading to good performance. A
second set of experiments uses a true large dataset for the
prediction of secondary structure of proteins, as “large” is
defined in this paper, to test the basic conclusion that sim-
ple disjoint partitioning is an effective method to create a
committee of classifiers for such datasets.

3.1 Variations of Partitioning & Bagging
We investigated four different approaches to creating a com-
mittee of N classifiers from an original data set. One ap-
proach is to simply partition the original data into N dis-
joint partitions of size (1/N)-th of the original data. Thus
the union of the N training sets is identical to the original
data. Results of this approach are labeled with “D” (for
“disjoint”) on the graphs. The second approach is to create
N bags of size (1/N)-th of the original data. Each bag is cre-
ated independently, by random sampling with replacement
from the original data. The union of the training sets is
generally not the same as the original data. Elements of the
original data may be replicated within a bag or across bags,
and not all elements of the original training data necessarily
appear. This approach is labeled “SB” (for “small bags”) on
the graphs. Comparison of the performance of “small bags”
versus that of disjoint partitions shows whether the random
replication of elements of the original training set results in
any inherent advantage.

The bagging approach blends (at least) two effects. The ran-
dom sampling with replacement means that different bags
may contain different elements of the original data. This
may aid “diversity” of classifiers and thereby help to in-
crease performance. The sampling with replacement also
effectively works to increase the number of individual data
elements that can be in a given bag, which changes their
“weight.” We examined two additional approaches, other
than simple disjoint partitioning and small bags, to explore
which elements of the bagging approach are most impor-
tant. The third approach is like small bags, but sampling
without replacement for each individual bag. Some authors
have reported that the effect of bagging does not depend on
whether the bags are sampled with or without replacement.
Sampling the individual bags without replacement, elements
of the original data do not repeat within a bag, but may re-
peat across bags. This approach is labeled “NRSB” (for “no-
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replication small bags”) on the graphs. The fourth approach
begins with the disjoint partitions. Then, independently for
each partition, a number of its elements are randomly se-
lected with replacement to be added to the “bagged dis-
joint.” Thus in this approach the union of the training sets
is a superset of the original data; all elements of the original
data appear, plus some random replications. The number of
added elements is equal to the average number of repeated
elements in a bag in the “small bags.” Thus a bag used in
this approach is slightly larger than (1/N)-th of the origi-
nal data. The amount of “extra” data included decreases as
the bag size decreases. Results of this approach are labeled
“DB” (for “disjoint bagged”) on the graphs. Comparison of
the results of this approach to the results of disjoint parti-
tions looks again at whether the random replication of data
elements results in any inherent advantage. In addition to
the above approaches, we also ran “true bagging” (M bags
the size of the original data, each created independently us-
ing random sampling with replacement) on each of the five
“small” datasets. The point of this data is to provide a base-
line performance comparison with the other approaches.

3.2 Datasets
Five small size data sets were used in experiments. Three
of these are from the UCI repository [2], one is from the
ELENA project1, and one is from our own research. The
size and class distribution of these datasets is summarized
in Table 1. Note that the datasets include both two-class
(Mammography, Phoneme) and multi-class (Letter, PenDig-
its, SatImage), and those that are approximately balanced
(Letter and PenDigits) and those that are skewed (Mam-
mography, Phoneme, SatImage).
The number of bags/partitions was varied from one to eight
for the four approaches to partitioning the dataset. Given
the modest size of the datasets, creating bags/partitions of
less than (1/8)-th the original size is likely to starve the
classifiers for training data.

3.3 Base Classifiers and Computing Systems
The base classifier in our experiments is release 8 of the C4.5
decision tree system [23]. For the experiments on the modest
size datasets, C4.5 was run on standard SUN workstations.

3.4 Results of Comparison of Approaches
Figures 1 through 5 summarize the experimental comparison
of the different approaches on the small datasets detailed
in Table 1. The plots compare the percentage correct of
the disjoint partitions approach to each of the other three
approaches, and to the performance of a single C4.5 decision
tree. Results are shown for a classifier committee of size
two, four, six, and eight. Results are shown as the average
paired difference in accuracy across the ten folds in the ten-
fold cross-validation, with standard error of the mean (SEM)
indicated. Wherever the mean difference is greater than zero
and the range of the standard error does not include zero, the
disjoint partitions result is statistically significantly better.
Wherever the mean difference is less than zero and the range
of the standard error does not include zero, as is generally
the case in comparing a committee of disjoint partitions to
a single C4.5 decision tree, the performance of the disjoint
partitions is statistically significantly worse.

1ftp.dice.ucl.ac.be in the directory pub/neural-
nets/ELENA/databases.

From examining these plots it is clear that disjoint parti-
tions generally, but not always, outperformed small bags.
It appears to make little difference whether the small bags
are created by sampling with or without replacement. The
“bagged disjoints” appear to generally perform slightly bet-
ter than the simple disjoints, but then the training sets for
the individual decision trees are slightly larger.

Several conclusions are evident from this first set of exper-
iments. One important conclusion is that creating a com-
mittee of classifiers using simple disjoint partitions generally
outperforms a committee created using the same number
and size of bags. Disjoint partitions outperform small bags
at all comparison points for three of the data sets, and at
most of the points across the other two data sets. It appears
to make little difference whether the small bags are created
by sampling with or without replacement. The “bagged dis-
joints” appear to generally perform slightly better than the
simple disjoints, but then the training sets for the individual
decision trees are slightly larger.
True bagging naturally out-performs any of the four ap-
proaches considered, as it uses constant-size bags as the
number of classifiers in the committee grows larger. How-
ever, the point is that true bagging is simply not a practical
option for “large” datasets. When the dataset is too large
to handle, the dataset must be broken into some number of
practical-sized, though not “small,” chunks. The question
addressed here is whether there is any advantage in creating
the practical size chunks using some bagging-like approach,
or whether simple partitioning is sufficient. These experi-
ments show that disjoint partitions perform at least as well
bags of the same size. However, with these small datasets,
the committee of classifiers created on disjoint subsets of the
data generally does not outperform a single classifier created
using all of the training data. (The satellite image dataset
shows a relatively minor improvement.)

4. MODERATE-SIZE PROTEIN DATA SET
The same four approaches investigated on the small datasets
were also run on the Jones data set from CASP-3 [16]. We
will refer to this as a “moderate” 299,186-item data set,
standing between the “small” data sets and the “large” 3.6-
million-item data set. The Jones dataset comes from the
problem of predicting the secondary structure of proteins.
Each amino acid in a protein can be labelled as helix (H),
coil (C), or sheet (E). The features for a given amino acid
are twenty values in the range -17 to 17, representing the
likelihood of the amino acid being any one of twenty basic
amino acids. Using a window of size seventeen centered
around the target amino acid, we have a feature vector of size
340. This window size and amino acid encoding is similar to
that used by Jones [16]; Jones actually used a window size
of 15 and scaled the feature values into the range [0,1].

This experiment used a separate set of test data. The test
data contains all protein chains entered into the PDB from
July 11 2000 to July 28 2000, that are based on X-ray
crystallography of three angstroms or finer. There were
146 chains entered in this time frame, containing a total
of 38,423 amino acids. All results are reported on a per
chain basis rather than per amino acid, as this is how re-
sults are reported in the CASP contest. The per-amino-acid
performance figures and the per-chain performance figures
are generally similar. These runs were performed using the
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Letter dataset (UCI) - 20,000 samples in 26 classes
A:789 B:766 C:736 D:805 E:768 F:775 G:773 H:734 I:755 J:747
K:739 K:761 M:792 N:783 O:753 P:803 Q:783 R:758 S:748 T:796
U:813 V:764 W:752 X:787 Y:786 Z:734

Phoneme dataset (ELENA) - 5,404 samples in two classes
0:3,818 1:1,586

Pendigits dataset (UCI) - 10,992 samples in ten classes
0:1,143 1:1,143 2:1,141 3:1,055 4:1,144 5:1,055 6:1,056 7:1,142 8:1,055 9:1,055

Satimage dataset (UCI) - 6,435 samples in six classes
1:1533 2:703 3:1,358 4:626 5:707 7:1,508

Mammography dataset - 11,183 samples in two classes
1:10,923 2:260

Jones’ PDB dataset - 299,186 samples in three classes
H:104,572 C:128,881 E: 65,733

PDB dataset - 3,619,461 samples in three classes
H:1,254,335 C:1,537,261 E:827,865

Table 1: Data Sets Used in Experiments, with Size and Class Distribution.
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Figure 1: Comparison of Partitioning/Bagging Variations on Letter Dataset.
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Figure 2: Comparison of Partitioning/Bagging Variations on PenDigits Dataset.
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Figure 3: Comparison of Partitioning/Bagging Variations on Phoneme Dataset.
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Figure 4: Comparison of Partitioning/Bagging Variations on SatImage Dataset.
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Figure 5: Comparison of Partitioning/Bagging Variations on Mammography Dataset.
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standard C4.5 implementation on typical SUN workstations.

The results of this experiment are plotted in Figure 6. The
performance comparison of the four approaches follows the
same general pattern as in the experiment with the small
datasets. Disjoint partitions again offer better performance
than bags of the same size. However, there is also an im-
portant difference between the results here and the results
with the small datasets. With the small data sets, the com-
mittee of classifiers did not out-perform the single classi-
fier constructed on all of the data. In the results for this
“moderate-sized” data set, the committee of classifiers does
improve over the single classifier constructed on all of the
data.

5. COMMITTEE OF CLASSIFIERS ON A
LARGE PROTEIN DATA SET

Our truly large dataset also comes from the Protein DataBase
(PDB) used in the CASP contests [17]. For 18,098 protein
chains taken from the PDB, we have a total of 3,679,152
amino acids for structure prediction. This training data
takes approximately 1.3 GB to 30 GB depending on how
the feature values are encoded (e.g., “signed char,” integer,
or float). The test data is again the separate set of 38,423
amino acids. Results are again reported on a per chain basis.

One run of the complete large dataset to produce a single
classifier was performed on an 64-processor SGI IRIX64 IP27
with 32 GB of main memory (!) at Sandia National Labs.
This run used the standard C4.5 implementation, and so
ran on a single processor, but was able to keep all data
structures in main memory. It required approximately 30
days to complete. The performance for the single decision
tree created using all the data is 78.6%. This accuracy figure
is computed as the average accuracy over 146 chains in the
test set, as done for the “Q3” metric in the CASP contests.

Runs to create a committee of N decision trees using disjoint
partitions of the large data set were performed on the DOE’s
“ASCI Red” parallel supercomputer [18]. The ASCI Red has
a total of 4,640 “compute nodes,” each of which contains
two Pentium III processors sharing 256MB of memory. The
processors run a version of the UNIX operating system. The
system is based on a distributed-memory mesh architecture,
and is capable of 3.15 TeraFLOPS. The parallel structure of
our modified version of C4.5 for this purpose is quite simple.
The disjoint partitions are loaded into the different CPUs’
memories and each CPU grows a decision tree independent
of the other CPUs.

Partitioning the large data set to just fill the memories of the
ASCI Red computer nodes requires the use of eight nodes.
To create a set of sixteen classifiers, eight classifiers trained
on a different eight partition of the data were added to those
created on the original eight-partition. The same approach
was used to create 24, 32 and 40 classifiers. Figure 7 sum-
marizes results from voting 8, 16, 24, 32, and 40 classifiers
created on disjoint partitions of the PDB dataset.
Note that while the performance from creating a single de-
cision tree using all the data is 78.6%, the performance of a
voting committee of eight partitions covering all of the data
improves to 81.8%. With a committee of thirty-two classi-
fiers, formed from four different eight-partitions, accuracy
increases to 84.1%. The committee of classifiers actually
has an even stronger effect than is evident from these num-
bers. The average performance of the eight individual clas-

sifiers is only 74.1%. In this experiment, we again see clearly
that disjoint partitioning is a reasonable way of creating a
committee of classifiers, and that the resulting committee
out-performs a single classifier created using all of the data.

6. BDT VERSUS ANN DIFFERENCES
One original goal of this work was to develop a classifier
to compete in the CASP 4 secondary structure prediction
contest. The motivation was that it should be possible to
perform well by using a truly large training data set, ap-
plying an appropriate bagging-like approach, and comput-
ing on the ASCI Red. We entered predictions for 38 of
41 “targets” in the CASP 4 contest. Our classifier was
a committee of 32 decision trees, each grown on a 1/8-th
partition of the 3.6 million item training set. When we
measured the performance of our classifier using our own
146-chain (38,423 amino acids) validation set, our classifier
out-performed Jones’ on-line CASP-4 classifier. However,
our CASP-4 predictions were generally not competitive with
Jones’ CASP-4 predictions. In the process of understanding
why this is the case, we have discovered several points about
performance of decision trees versus neural networks.

To make it computationally practical to run experiments
to investigate various effects, we constructed a version of
the Jones 299,186-item data set using a window size of five.
A single cascade-correlation neural network [11] of size 75
hidden units was created on this training data, and then
tested on our 146-chain (38,423 amino acid) validation set.
A single C4.5 decision tree was also created on the same
training set and tested on the same validation set. The
decision tree was evaluated without pruning, with default
pruning, and with the strongest possible pruning using the
C4.5 “pessimistic pruning” (certainty factor = 1).

In the process of looking at results of the decision tree on
individual proteins in the validation set, it was noticed that
the decision tree performance was nearly perfect on some
proteins and then quite poor on other proteins. Thus the
decision tree effectively divided the data into an “easy” sub-
set (chains from the validation set on which the accuracy
was over 90%) and a “hard” subset. In comparison, this
effect was much smaller with the neural network. While the
decision tree accuracy with maximum pruning and use of
the feature to indicate zero-padding was only 1.0% lower
than the neural network accuracy overall, it was 7.0% lower
on the “hard” subset and 5.5% higher on the “easy” sub-
set. This effect hurt the decision tree entries in CASP-4, as
the “hard” subset of our validation set was much more rep-
resentative of the CASP-4 targets than the “easy” subset.
Thus while the decision tree performed well in comparison
to Jones’ on-line classifier on our validation set, it’s cor-
responding performance on the CASP-4 targets would be
substantially worse.

Interestingly, the hard/easy gap in performance is strongly
affected by the degree of pruning, even though the over-
all accuracy is not as greatly affected. There are different
pruning strategies available for use with decision trees, and a
“reduced-error” strategy might allow stronger pruning. We
are currently implementing reduced-error pruning for use
with C4.5 decision trees, in order to more completely ex-
plore the effects of pruning.
Another interesting effect is seen when the feature vector
for an amino acid is augmented with an extra feature to
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classifier overall accuracy “hard” subset “easy” subset
cascade correlation NN: 75 hidden units, no extra bit 69.7% 68.4% 71.2%
cascade correlation NN: 75 hidden units, extra bit 71.3% 69.3% 73.6%
C4.5 BDT: no pruning, no extra bit 68.0% 57.0% 80.0%
C4.5 BDT: no pruning, extra bit 68.9% 58.0% 80.6%
C4.5 BDT: default pruning, no extra bit 68.4% 58.0% 79.7%
C4.5 BDT: default pruning, extra bit 69.2% 58.5% 80.9%
C4.5 BDT: max pruning, no extra bit 68.8% 61.4% 79.6%
C4.5 BDT: max pruning, extra bit 70.3% 62.3% 79.1%

Jones’ on-line classifier 80.1% 79.0% 81.3%
C4.5 BDT committee, 17-window 84.1% 72.6% 96.6%

Table 2: Performance Comparison of Individual DTs and ANNs, With Reference Points.
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indicate whether or not the window centered at that amino
acid lies within the chain. For amino acids within half the
window size of the end of the protein, part of the window
centered at that position falls off the end of the protein.
Feature values for the amino acid positions that fall off the
end of the protein are padded with zeroes. The “extra bit”
indicated with some entries in Table 2 is an added feature
for each amino acid that indicates whether part of its feature
vector consists of zero-padding. Performance is consistently
better by a small amount when this feature is used. Note
that the percentage of the training data affected by zero-
padding increases as the window size increases.

The last two rows in Table 2 compare the performance of
a committee of thirty-two C4.5 decision tree classifiers with
the performance of Jones’ on-line classifier. The training set
is the large dataset in Table 1. The dataset is divided into
eight disjoint partitions in four different ways. This gives the
thirty-two classifiers. The test set is our set of 146 chains
(38,423 amino acids). Note how the relative performance of
Jones’ neural network classifier and our decision tree clas-
sifier differ. The committee of decision tree classifiers was
able to outperform Jones’ classifier on the overall data set,
but lost to Jones’ classifier by a substantial amount on the
hard subset of the data. The individual decision trees in
this committee of classifiers were unpruned. We are cur-
rently running additional experiments to explore the effect
of using heavily pruned decision trees for the classifiers in
the committee.

7. CONCLUSIONS AND DISCUSSION
The results presented here support several important con-
clusions. The primary conclusion is that datasets too large
to handle practically in the memory of the typical computer
are appropriately handled by simple partitioning to form a
voting committee of N classifiers. In addition, for large data
sets, the performance of the resulting committee of classi-
fiers can be expected to exceed that of a single classifier built
from all the data. In the context of the protein structure
prediction problem, the performance of the decision tree is
subtly influenced by the degree of pruning. Thus, it will be
important to tune decision tree performance by optimizing
the degree of pruning. By itself, this is not necessarily a
drawback in comparison to neural networks, because neural
networks must be tuned by adjusting the structure of the
network and various training parameters.
In contrast to decision trees, neural networks do not seem to
be as susceptible to learning a hard/easy split of the training
data. We conjecture that this is an intrinsic reflection of how
decision trees and neural networks operate. The decision
tree can effectively split off a subset of the training data (a
region of feature space) to be handled differently, whereas all
the training examples influence all the weights in the neural
network.
Some researchers have suggested that many large-data-set
problems can be solved using only a fraction of the data,
perhaps by simple sub-sampling. Classical pattern recogni-
tion would suggest that this question is more appropriately
viewed in terms of the density of training sample popula-
tion in the feature space, rather than simply the size of the
dataset. There is “excess” data only when (parts of) fea-
ture space are densely populated. The fact that the average
(1/8)-th partition of our large dataset had performance of

74.1%, whereas a single classifier trained on all the data
gave 78.6%, indicates that the original data could not be
profitably sub-sampled. This should not really be surpris-
ing. With a 340-dimension feature space, even 3.6 million
examples can result in a “sparse” population.
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